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LET G be a residually-finite torsion-free group. Is G- the profinite
completion of G-torsion free? This question was asked in [CKL] where it
was shown that if G is a finitely generated metabelian-by-finite group
then indeed G is torsion free. On the other hand Evans [E] showed that
if G is not finitely generated then it is possible that G has torsion. His
example is also metabelian. In this note we observe that G might have
torsion even if G is finitely generated (but of course not metabelian in
light of [CKL]). In fact we present an example of a finitely generated
torsion free group whose pro-finite completion contains as much torsion
as one can wish.

THEOREM 1. There exists a finitely generated, residually finite, torsion-
free group G whose pro-finite completion G contains an isomorphic copy
of every separable profinite group. In particular, G contains the cartesian
product II Fj where Fj runs over all (isomorphism classes of) finite groups.

i

The proof of Theorem 1 is based on the congruence subgroup problem
and some of its related properties (e.g. super-rigidity), but the group G is
not a linear group. Still, for linear groups the situation is not much
better.

PROPOSITION 2. (a) There exists a finitely generated torsion-free linear
group G, whose profinite completion G contains, for every integer r 5s 2,
uncountably many conjugacy classes of elements of order r.

(b) For every finite group F, there exists a finitely generated, torsion
free, linear group G whose pro-finite completion contains Fw-the cartesian
power of F countably many times.

Proofs. For n s= 3, the group Tn = SLn(T) has the congruence sub-
group property (CSP for short). This means that every finite index

subgroup H of Tn contains Yn{m) = Ker (SLn(Z)-^-> SLn(Z/mZ)) for
some non-zero integer m. This is due to Mennicke [M] (see [S] for an
easier proof). In the language of [BMS], this means that the pro-finite
topology of Fn is equal to the congruence topology. As the map q>m is
surjective [N, p. 109], this implies that STjT) =* Ijm SLn(Z/mZ) -
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SLn(t) where Z is the pro-finite completion of the ring of integers. Now,
t = l\Zp where Zp is the ring of p-adic integers and p runs over all

p

primes and SLn(t) = HSLn(Zp). The group Fn is finitely generated ([N,
p

p. 107]) and clearly residually finite. Hence so are all the finite index
subgroups of Fn. Fn has torsion, but for m2*3, Fn(m) is torsion free.
Now let G be any finite-index, torsion-free subgroup of Fn (n > 3). The
pro-finite completion G of G is an open subgroup of f„ = SLn(Z). It
therefore contains II SLn(Zp) as a direct factor where S is a finite set of

P«S
primes. Now, let r be an integer 2*2. By Dirichlet's theorem, there is an
infinite set of primes 9 with r\p -1 and 9D 5 = 0 . For every p e 9, Zp

has a unit of order r and hence SLn(Zp) has an element pp of order r. For
every subset A<^&, we define an element aA = (ap) of SLn(Z) by:
ap = pp if p eA and ap = 1 if /> $ A One can easily check that this gives
an element in G of order r. If A and A' are different subsets than aA and
a'A are not conjugate. This proves Proposition 2(a).

For Proposition 2(b): given F choose n ^ 3 so that F is a subgroup of
SLn(Z). Then take a torsion-free finite index subgroup G of SLn(Z)
(which in particular avoids F). As before G contains n SLn(Zp) where S

P*S

is a finite set. Since each SLn(Zp) contains F, G contains Fw.
The proof of Theorem 1 is also based on the CSP of SLn(Z)—but this

time we need some more properties of these groups. These properties are
in fact proved with the help of CSP or by other methods (e.g. Margulis
super rigidity cf. [Ma] or [Zi]). We list them here before starting the
proof:

Let Fn = SLn(Z) and n 5= 3, and let An be a finite index subgroup of Tn.
Then

(i) Every normal subgroup of Art is either finite or of finite index [Ma,
p. 167]), [S] or [Zi, § 8]).

(ii) let q>u <p2: Fn—*SLn+t(Z) be the two embeddings: q>t embeds Fn in
the upper left n x n corner and cp2 embeds Fn in the lower right
n xn corner. Then the group generated by <Pi(An) and q>2(An) is of
finite index in Fn+1. This follows from [V, Cor. 8.3].

n

(iii) If A = n A*, then there is no epimorphism from A onto An+I. This
is a consequence of the "super-rigidity" of A (cf. [BMS, Thm. 16.2],
[Ma, p. 228], [S] or [Zi, §5]) and the fact that there is not

n

epimorphism from FI SLk(C) onto SLn+l(C).

(iv) Let A be a subgroup of H = W SLk(Z). Assume that for every
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k = 3, . . . , n the projection of A into SLk(Z) is of finite index in
SLk(Z). Then A is of finite index in H. This we prove by induction
on n. For n = 3, there is nothing to prove. For n>4, we know by
the induction hypothesis that A|, the projection of A into
n - l

fl SLk(Z), is of finite index there. Let N be the kernel in A of this
* - 3

projection. Then N is a normal subgroup of A which is contained in
SLn(T). It is easy to see that N is also normal in K—the projection
of A to SLn(Z). By assumption K is of finite index in SLn{Z) and so
by property (i), N is either finite or of finite index in K. In the
second case we are done. In the first case: Let A' be a finite index
subgroup of A such that A'flN = {l}. Then A' is isomorphic on one

n — \

hand to a finite index subgroup of n SLk(Z) and on the other hand
* - 3

it is mapped onto a finite index subgroup of SLn(Z). This contradicts
(iii).

We are ready now for the proof of Theorem: Denote Kn = SLn(l) and

Kn(m) = Ker(SLn(2)->- SLn(I/mt)). Let K = fl Kn and A a finite index
rt-3

subgroup of F3 = SLj(Z) which is contained in the congruence subgroup
r3(/n) for some m2=3. Embed /„: F3—•SL,,^) in the left upper 3 x 3
corner and let A be the diagonal group (/n(A))"=3. Define an element
CT = (an)"_3 of K, where an acts on the standard basis eu . . . , en by:
on(ei) = e/+, for i = 1, . . . , « - 1 and on(en) = (-l)"e,. Now, let G be the
subgroup of K generated A and o. We will prove that G satisfies the
properties promised in the theorem.

As A is finitely generated G is clearly finitely generated. By induction
on n one proves: The group Hn generated by (A, oAo~\
c^Aa"2, . . . , o"~3Aa~('I~3)) has the following property: It is mapped

n

injectively onto a finite index subgroup of n I\(m).
*=3

Indeed, for n = 3 this is by the definition of A. Assume for n — 1. Then
one sees that the projection of //„_, in Kn is inside rn_,(m) and of finite
index there. Thus (Hn_t U oHn_lo~l) = Hn is projected into Tn(m) and
by property (ii), it is of finite index there. Property (iv) now implies that

n

Hn is projected onto a finite index subgroup of n rk(m). Moreover,

there is no kernel to it as the projections of Hn to Tn for r 5* n are coming
from the "diagonal" embedding of the projection of Hn to Tn.

ao

As Tk{m) is torsion free for every k, so is Hn, and hence H = U Hn is
n-3



330 ALEXANDER LUBOTZKY

torsion free. Let L]=H and Ln+1 = G~lLnG. Then L , c L n + , and

L{J Lnis also torsion free. L is the normal closure of A in G and GIL is

an infinite cyclic group generated by a. This shows that G is also
torsion-free.

G being a subgroup of the pro-finite group K is certainly residually
finite.

We now claim that in G the pro-finite completion of G, the closure Hn

of Hn is isomorphic to /)„. This means that the pro-finite topology of G
induces on Hn—its pro-finite topology (and not a weaker one as may
happen in general). Indeed, by the CSP, the pro-finite topology of Hn is
equal to the congruence topology and so dn is equal to the closure of Hn

in ft SLn(t). The embedding of G in K induces a map from G to K and
* - 3

with respect to this map we see that Hn in G is mapped to a group
isomorphic to #„. On the other hand, it is clear that Hn is an epimorphic
image of fin. This implies that Hn=^fln as both are finitely generated

n

profinite groups. Now, Hn is a finite index subgroup of II SLk(T).
*=3

As in the proof of Proposition 2, we can deduce that Hn contains
II SLn(%p) where S(n) is a finite set of primes. For every n s* 3,

peS(n)
choose by induction a prime pn such that Hn contains SLn(ZpJ and
SLn(jLPm) commute with SLk(ZPt) for k<n. This way we ensure that

II SLn(Zp ) is a subgroup of G.

To finish the proof of Theorem 1: Let A = Y\ An where An is the
n-3

alternating group. An cSLn(ZPii) and hence A c G. Now (as in [LW]),
every separable pro-finite group Q is an inverse limit of countably many
finite groups and therefore can be embedded in a cartesian product of
countably many finite groups. Such a product can be embedded in A and
so Q is isomorphic to a subgroup of G.

Remarks
(1) We do not know if Theorem 1 can be proved with G linear. In fact

one may suggest to the contrary, e.g. for every n, there is a number
f(n) such that if F is a finite simple group which can be embedded in
the pro-finite completion of a linear group of degree n, then F is
linear of degree *^f(n) over some field.

(2) We do not know if examples of the kind produced here can be found
when the pro-p completion functor is applied on residually-p groups.
Here is a weak version of Proposition 2(b) in this context:
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PROPOSITION 3. Given a finite p-group F, there exists a finitely
generated, residually-p, torsion free, linear group G whose pro-p comple-
tion contains a copy of F.

Proof. Choose n > 4 for which F cSLn(Z). Choose a prime q^p,
Ker(SLn(Zq)-*SLn(q)) is a pro-q group and hence F is a subgroup
of SLn(q). Let Q be the pre-image of F in SLn(Zq) and
P = Ker(SLn(Zp)^SLn(p)). (If p = 2 take P = Ker(SLn(Z2)-+
5 L n ( Z 2 / 4 Z ) ) . T h e n IT SLn(Z,) x P x Q is i s o m o r p h i c t o a n o p e n

i+p.q

subgroup of SLn(l). Hence it is the pro-finite completion of some finite
index subgroup F of SLn(Z). F is torsion-free and residually-p since
F c P. The pro-p completion of F is the maximal pro-p quotient of its
pro-finite completion. It is therefore isomorphic to F x P, since SLn(Z,)
does not have a non-trivial p-quotient.
(3) A final remark: a dual problem to the one discussed in this paper is:

Let G be a finitely generated, residually-finite, infinite torsion group.
Is G a torsion group? To this question the answer is always—NO.
This follows from the recent work of Zelmanov [Z]. For some cases
this was proved before by McMullen [Mm].
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